Packages

final class GEOps2[A] extends AnyVal

GEOps2 are operations for graph elements (GE). Instead of having these operations directly defined in each element, which is a huge list, they appear here as extension methods. GEOps1 are unary operators, whereas GEOps2 are binary and n-ary operators.

Self Type
GEOps2[A]
See also

GE

GEOps1

Linear Supertypes
AnyVal, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. GEOps2
  2. AnyVal
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Instance Constructors

  1. new GEOps2(x: GE[A])

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    Any
  2. final def ##: Int
    Definition Classes
    Any
  3. def %[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  4. def &(that: GE[A])(implicit num: NumInt[A]): GE[A]

    Bit-wise AND

  5. def &&(that: GE[A])(implicit num: NumBool[A]): GE[A]

    Logical AND

  6. def *[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]

    Multiplication of two signals.

  7. def +[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]

    Addition of two signals.

  8. def -[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]

    Subtracts the second operand from the input signal.

  9. def /[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: NumDiv[A2]): GE[A2]
  10. def <(that: GE[A])(implicit ord: ScalarOrd[A]): B
  11. def <<(that: GE[A])(implicit num: NumInt[A]): GE[A]
  12. def <=(that: GE[A])(implicit ord: ScalarOrd[A]): B
  13. final def ==(arg0: Any): Boolean
    Definition Classes
    Any
  14. def >(that: GE[A])(implicit ord: ScalarOrd[A]): B
  15. def >=(that: GE[A])(implicit ord: ScalarOrd[A]): B
  16. def >>(that: GE[A])(implicit num: NumInt[A]): GE[A]
  17. def >>>(that: GE[A])(implicit num: NumInt[A]): GE[A]
  18. def ^(that: GE[A])(implicit num: NumInt[A]): GE[A]

    Bit-wise XOR

  19. def ^^(that: GE[A])(implicit num: NumBool[A]): GE[A]

    Logical XOR

  20. def absDif[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]

    The absolute difference between two signals.

  21. def amClip[A1](that: GE[A1])(implicit w: Widen2[A, A1, Double]): D

    Clipped amplitude-modulation.

    Clipped amplitude-modulation. A multiplication of both signals, or zero if the second operand is less than or equal to zero.

  22. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  23. def atan2[A1](that: GE[A1])(implicit w: Widen2[A, A1, Double]): D
  24. def clip[A1, A2](lo: GE[A1], hi: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  25. def clip2[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  26. def complex(implicit ev: =:=[GE[A], D]): GEComplexOps

    Enables operators for an assumed complex signal.

  27. def difSqr[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  28. def excess[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]

    Residual of clipping, also known as center clipping.

    Residual of clipping, also known as center clipping. The formula is (a - clip2(a, b)).

  29. def expExp(inLo: D, inHi: D, outLo: D, outHi: D)(implicit w: Widen[A, Double]): D
  30. def expLin(inLo: D, inHi: D, outLo: D, outHi: D)(implicit w: Widen[A, Double]): D
  31. def fold[A1, A2](lo: GE[A1], hi: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  32. def fold2[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  33. def gcd(that: GE[A])(implicit num: NumInt[A]): GE[A]

    Greatest-common-denominator.

  34. def getClass(): Class[_ <: AnyVal]
    Definition Classes
    AnyVal → Any
  35. def hertz(implicit sr: SampleRate, w: Widen[A, Double]): D

    Converts a frequency in Hertz to a normalized frequency, divided by the sampling rate.

  36. def hypot[A1](that: GE[A1])(implicit w: Widen2[A, A1, Double]): D
  37. def hypotApx[A1](that: GE[A1])(implicit w: Widen2[A, A1, Double]): D
  38. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  39. def lcm(that: GE[A])(implicit num: NumInt[A]): GE[A]

    Least-common-multiple.

  40. def linExp(inLo: D, inHi: D, outLo: D, outHi: D)(implicit w: Widen[A, Double]): D
  41. def linLin(inLo: D, inHi: D, outLo: D, outHi: D)(implicit w: Widen[A, Double]): D
  42. def matchLen[B](b: GE[B]): GE[A]

    Truncates or extends the first operand to match the length of b.

    Truncates or extends the first operand to match the length of b. This uses the SecondArg operator with operands reversed.

  43. def max[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  44. def min[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  45. def mod[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  46. def poll(gate: B = Metro(0), label: Optional[String] = None): Poll[A]

    Polls the output values of this graph element, and prints the result to the console.

    Polls the output values of this graph element, and prints the result to the console. This is a convenient method for wrapping this graph element in a Poll UGen.

    gate

    a gate signal for the printing.

    label

    a string to print along with the values, in order to identify different polls. Using the special label "#auto" (default) will generated automatic useful labels using information from the polled graph element

    See also

    de.sciss.fscape.graph.Poll

  47. def poll(label: String): Poll[A]

    Polls a single value from the element, and prints it with a given label.

  48. def poll: Poll[A]

    Polls a single value from the element.

  49. def pow[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, Double]): D

    Warning: Unlike a normal power operation, the signum of the left operand is always preserved.

    Warning: Unlike a normal power operation, the signum of the left operand is always preserved. I.e. DC.kr(-0.5).pow(2) will not output 0.25 but -0.25. This is to avoid problems with floating point noise and negative input numbers, so DC.kr(-0.5).pow(2.001) does not result in a NaN, for example.

  50. def ring1[A1](that: GE[A1])(implicit w: Widen2[A, A1, Double]): D
  51. def ring2[A1](that: GE[A1])(implicit w: Widen2[A, A1, Double]): D
  52. def ring3[A1](that: GE[A1])(implicit w: Widen2[A, A1, Double]): D
  53. def ring4[A1](that: GE[A1])(implicit w: Widen2[A, A1, Double]): D
  54. def roundTo[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  55. def roundUpTo[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  56. def scaleNeg[A1](that: GE[A1])(implicit w: Widen2[A, A1, Double]): D

    If the input is positive, passes it unmodified, if it is negative it is scaled (multiplied) by the second operand.

  57. def seconds(implicit sr: SampleRate, w: Widen[A, Double]): L

    Converts a duration in seconds to a number of sample frames, by multiplying with the sampling rate.

    Converts a duration in seconds to a number of sample frames, by multiplying with the sampling rate. The value is truncated to an integer number.

  58. def sig_!=(that: GE[A])(implicit eq: Eq[A] with Scalar[A]): B

    Compares the two signals for inequality, frame by frame

  59. def sig_==(that: GE[A])(implicit eq: Eq[A] with Scalar[A]): B

    Compares the two signals for equality, frame by frame

  60. def sqrDif[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  61. def sqrSum[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  62. def sumSqr[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  63. def thresh[A1](that: GE[A1])(implicit w: Widen2[A, A1, Double]): D

    Thresholding such that the input signal is passed when it is equal to or greater than the second operand, otherwise zero is output.

  64. def toString(): String
    Definition Classes
    Any
  65. def trunc[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  66. def wrap[A1, A2](lo: GE[A1], hi: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  67. def wrap2[A1, A2](that: GE[A1])(implicit w: Widen2[A, A1, A2], num: Num[A2]): GE[A2]
  68. def |(that: GE[A])(implicit num: NumInt[A]): GE[A]

    Bit-wise OR

  69. def ||(that: GE[A])(implicit num: NumBool[A]): GE[A]

    Logical OR

Inherited from AnyVal

Inherited from Any

Ungrouped