object Compander extends ProductReader[Compander] with Serializable
A compressor, expander, limiter, gate and ducking UGen. This dynamic processor uses a hard-knee characteristic. All of the thresholds and ratios are given as direct values, not in decibels!
- See also
- Alphabetic
- By Inheritance
- Compander
- Serializable
- ProductReader
- AnyRef
- Any
- Hide All
- Show All
- Public
- Protected
Value Members
- final def !=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- final def ##: Int
- Definition Classes
- AnyRef → Any
- final def ==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
- def ar(in: GE, ctrl: GE, thresh: GE = 0.5f, ratioBelow: GE = 1.0f, ratioAbove: GE = 1.0f, attack: GE = 0.01f, release: GE = 0.1f): Compander
- in
The signal to be compressed / expanded / gated.
- ctrl
The signal whose amplitude controls the processor. Often the same as in, but one may wish to apply equalization or delay to it to change the compressor character (side-chaining), or even feed a completely different signal, for instance in a ducking application.
- thresh
Control signal amplitude threshold, which determines the break point between slopeBelow and slopeAbove. Usually 0..1. The control signal amplitude is calculated using RMS.
- ratioBelow
Slope of the amplitude curve below the threshold. If this slope > 1.0, the amplitude will drop off more quickly the softer the control signal gets; when the control signal is close to 0 amplitude, the output should be exactly zero -- hence, noise gating. Values < 1.0 are possible, but it means that a very low-level control signal will cause the input signal to be amplified, which would raise the noise floor.
- ratioAbove
Slope of the amplitude curve above the threshold. Values < 1.0 achieve compression (louder signals are attenuated); > 1.0, you get expansion (louder signals are made even louder). For 3:1 compression, you would use a value of 1/3 here.
- attack
The amount of time it takes for the amplitude adjustment to kick in fully. This is usually pretty small, not much more than 10 milliseconds (the default value). I often set it as low as 2 milliseconds (0.002).
- release
The amount of time for the amplitude adjustment to be released. Usually a bit longer than attack; if both times are too short, you can get some (possibly unwanted) artifacts.
- final def asInstanceOf[T0]: T0
- Definition Classes
- Any
- def clone(): AnyRef
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.CloneNotSupportedException]) @native() @HotSpotIntrinsicCandidate()
- final def eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- def equals(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef → Any
- final def getClass(): Class[_ <: AnyRef]
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def isInstanceOf[T0]: Boolean
- Definition Classes
- Any
- def kr(in: GE, ctrl: GE, thresh: GE = 0.5f, ratioBelow: GE = 1.0f, ratioAbove: GE = 1.0f, attack: GE = 0.01f, release: GE = 0.1f): Compander
- in
The signal to be compressed / expanded / gated.
- ctrl
The signal whose amplitude controls the processor. Often the same as in, but one may wish to apply equalization or delay to it to change the compressor character (side-chaining), or even feed a completely different signal, for instance in a ducking application.
- thresh
Control signal amplitude threshold, which determines the break point between slopeBelow and slopeAbove. Usually 0..1. The control signal amplitude is calculated using RMS.
- ratioBelow
Slope of the amplitude curve below the threshold. If this slope > 1.0, the amplitude will drop off more quickly the softer the control signal gets; when the control signal is close to 0 amplitude, the output should be exactly zero -- hence, noise gating. Values < 1.0 are possible, but it means that a very low-level control signal will cause the input signal to be amplified, which would raise the noise floor.
- ratioAbove
Slope of the amplitude curve above the threshold. Values < 1.0 achieve compression (louder signals are attenuated); > 1.0, you get expansion (louder signals are made even louder). For 3:1 compression, you would use a value of 1/3 here.
- attack
The amount of time it takes for the amplitude adjustment to kick in fully. This is usually pretty small, not much more than 10 milliseconds (the default value). I often set it as low as 2 milliseconds (0.002).
- release
The amount of time for the amplitude adjustment to be released. Usually a bit longer than attack; if both times are too short, you can get some (possibly unwanted) artifacts.
- final def ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
- final def notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- final def notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @HotSpotIntrinsicCandidate()
- def read(in: RefMapIn, key: String, arity: Int): Compander
- Definition Classes
- Compander → ProductReader
- final def synchronized[T0](arg0: => T0): T0
- Definition Classes
- AnyRef
- def toString(): String
- Definition Classes
- AnyRef → Any
- final def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
- final def wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException]) @native()
- final def wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.InterruptedException])
Deprecated Value Members
- def finalize(): Unit
- Attributes
- protected[lang]
- Definition Classes
- AnyRef
- Annotations
- @throws(classOf[java.lang.Throwable]) @Deprecated
- Deprecated