object FBSineN extends ProductReader[FBSineN] with Serializable
A non-interpolating sound generator based on the difference equations:
x[n+1] = sin(im * y[n] + fb * x[n]) y[n+1] = (a * y[n] + c) % 2pi
This uses a linear congruential function to drive the phase indexing of a sine wave. For im = 1, fb = 0, and a = 1 a normal sine wave results.
Examples
// default initial parameters play { FBSineN.ar(SampleRate.ir/4) * 0.2 }
// increase feedback play { FBSineN.ar(SampleRate.ir, 1, Line.kr(0.01, 4, 10), 1, 0.1) * 0.2 }
// increase phase multiplier play { FBSineN.ar(SampleRate.ir, 1, 0, XLine.kr(1, 2, 10), 0.1) * 0.2 }
// modulate frequency and index multiplier play { FBSineN.ar(LFNoise2.kr(1).mulAdd(1e4, 1e4), LFNoise2.kr(1).mulAdd(16, 17), 1, 1.005, 0.7) * 0.2 }
// randomly modulate parameters play { FBSineN.ar( LFNoise2.kr(1).mulAdd(1e4, 1e4), LFNoise2.kr(1).mulAdd(32, 33), LFNoise2.kr(1) * 0.5, LFNoise2.kr(1).mulAdd(0.05, 1.05), LFNoise2.kr(1).mulAdd(0.3, 0.3) ) * 0.2 }
Linear Supertypes
Ordering
- Alphabetic
- By Inheritance
Inherited
- FBSineN
- Serializable
- ProductReader
- AnyRef
- Any
- Hide All
- Show All
Visibility
- Public
- Protected
Value Members
- def ar(freq: GE = Nyquist(), im: GE = 1.0f, fb: GE = 0.1f, a: GE = 1.1f, c: GE = 0.5f, xi: GE = 0.1f, yi: GE = 0.1f): FBSineN
- freq
Iteration frequency in Hertz
- im
Index multiplier amount
- fb
Feedback amount
- a
Phase multiplier amount
- c
Phase increment amount
- xi
Initial value of x
- yi
Initial value of y
- def ar: FBSineN
- def read(in: RefMapIn, key: String, arity: Int): FBSineN
- Definition Classes
- FBSineN → ProductReader